Data Structures — CST 201

Module - 2

e

Syllabus

= Polynomial representation using Arrays
= Sparse matrix
= Stacks
Evaluation of Expressions
= Queues
Circular Queues
Priority Queues
Double Ended Queues,
= Linear Search
= Binary Search

-

e

-

QUEUE

Queue Is a linear data structure

= Queue Is an ordered collection of homogenous

data elements where the Insertion and deletion
takes place at two extreme ends called as front

end and rear end

as It had entered.

= So It is a First In First Out- FIFO Memory

= The data In queue Is processed in the same order

/

/QUEUE- Real Time Applicationg

= Queuing In front of a counter
= Traffic control at a turning point

= Process synchronization in multi-user
environment

= Resource sharing in a computer centre

Queuing in front of a counter

C-ounter

Figure 5.1(a) CQueue of customers.
153

Traffic control at a turning point

Figure 5.1(b) Traffic passing at a turning point.

e

Process synchronization in multi-user
environment

Ready Awaited

Figure 5.1{c) CQueues of processes.

Resource sharing in a computer centre

L
s

"

™

o

- \Waiting register

NN RRRAR

Figure 5.1(d) A waiting queue of users in a computer centre,

: QUEUE- Basic Terminologies h
= ENQUEUE- Insertion in the QUEUE

= DEQUEUE-Deletion in the QUEUE
= REAR- Where INSERTION takes place
= FRONT-Where DELETION takes place
= I TEM- An Element in QUEUE

= LENGTH / SIZE- Total Number of elements that
gueue can accommodate

4 .
QUEUE- Operations
= ENQUEUE: Insert an element into Queue
= DEQUEUE: Delete an element from the Queue
= DISPLAY: Display the contents of the Queue

: QUEUE- Representations

= Two Representations
= Array Representation

Dequeue Enqueue
= MEDEANa6HD —

0O 1 2 4 5 6
FRONT REAR

= Linked List Representation

' QUEUE — ENQUEUE Algorithm

‘ INt A[5]; ‘ If FRONT=-1 Or REAR=-1 then
Queue is EMPTY

0 1 2 3 4

FRONT=-1
REAR=-1

™~

ENQUEUE 10

0 1 2 3 4

FRONT=-1
REAR=-1

FRONT =0
REAR = REAR + 1
A[REAR] = 10

ENQUEUE 10

0 1 2 3 4

FRONT=-1
REAR=-1

ol
0 1 2 3 4

FRONT=0
REAR=0

ENQUEUE 20

ol
0 1 2 3 4

FRONT=0
REAR=0

REAR = REAR + 1
A[REAR] = 20

ENQUEUE 20

ol
0 1 2 3 4

FRONT=0
REAR=0

REAR = REAR + 1
A[REAR] = 20

ENQUEUE 20

EIEI
0 1 2 3 4

FRONT=0 REAR=1

REAR = REAR + 1
A[REAR] = 30

ENQUEUE 30

EIEI
0 1 2 3 4

FRONT=0 REAR=1

REAR = REAR + 1
A[REAR] = 30

ENQUEUE 30

DEIEIE
0 1 2 3 4

FRONT=0 REAR=2

REAR = REAR + 1
A[REAR] = 40

ENQUEUE 40

DEIEIE
0 1 2 3 4

FRONT=0 REAR=2

REAR = REAR + 1
A[REAR] = 40

ENQUEUE 40

DEIEIEIE
0 1 2 3 4

FRONT=0 REAR=3

REAR = REAR + 1
A[REAR] = 50

ENQUEUE 50

DEIEIEIE
0 1 2 3 4

FRONT=0 REAR=3

REAR = REAR + 1
A[REAR] = 50

ENQUEUE 50

DEIEIEIES
0 1 2 3 4

FRONT=0 REAR=4

If REAR = SIZE -1 then
Print “Queue is FULL”

ENQUEUE 60

DEIEIEIES
0 1 2 3 4

FRONT=0 REAR=4

" QUEUE - ENQUEUE

Algorithm ENQUEUE(ITEM)

{ If REAR = SIZE -1 then
Print “Queue is FULL”
else If REAR= -1 then //Currently Queue is empty
{ FRONT =0
REAR =0
A[REAR] = ITEM
¥
else
{ REAR = REAR +1
A[REAR] = ITEM
¥

' QUEUE — DEQUEUE Algorithm

DEIEIEIE
0 1 2 3 4

1

FRONT=0

1

REAR=3

DEQUEUE

FRONT = FRONT +1

DEQUEUE

DEIEIEIE
0 1 2 3 4

FRONT=0 REAR=3

FRONT = FRONT +1

EEIEIEIE
0 1 2 3 4

FRONT=1 REAR=3

FRONT = FRONT +1

DEQUEUE

EEIEIEIE
0 1 2 3 4

FRONT=1 REAR=3

BRI

11

FRONT=2 REAR=3

FRONT = FRONT +1

BRI

11

FRONT=2 REAR=3

FRONT = FRONT +1

DEQUEUE

I
0 1 2 3 4

FRONT=3
REAR=3

FRONT = FRONT +1

I
0 1 2 3 4

FRONT=3
REAR=3

DEQUEUE

If FRONT = REAR then
FRONT=-1
REAR =-1

DEQUEUE

I
0 1 2 3 4

FRONT=3
REAR=3

0 1 2 3 4

FRONT=-1
REAR=-1

If FRONT = REAR then
FRONT=-1
REAR =-1

" QUEUE-DEQUEUE

Algorithm DEQUEUE()
{ If FRONT = -1 then
Print “Queue iIs EMPTY”
else if REAR = FRONT then //Queue contains only one element
{ Print “The deleted item is “ A[FRONT]
FRONT =REAR =-1

¥

else

{ Print “The deleted item is “ A[FRONT]
FRONT = FRONT + 1

¥

—

' QUEUE — DISPLAY Algorithm

EEIEIEIE
0 1 2 3 4

FRONT=1 REAR=3

For i=FRONT to REAR do
Print A[i]

\

: QUEUE — DISPLAY

Algorithm DISPLAY ()

{
If FRONT =-1 then
Print “Queue IS EMPTY”
else
{
for =FRONT to REAR do
Print A[1]
}
¥

: QUEUE- Various States :

1. Queue is Empty: FRONT=-1 & REAR=-1

2. Queue iIs Full: REAR=SIZE -1

3. Total elements in a queue =REAR - FRONT + 1

QUEUE- Disadvantage

HEEIRC
0 1 2 3 4

FRONT=2 REAR=4

= For a queue represented using an array, when the
REAR pointer reaches the end, the insertion will
oe denied even If room is available at the front

- /

Let us trace the above algorithm with queue
LENGTH =10. Suppose the current state of the
queue is FRONT=7 and REAR=8. 10 operations

are requested as under
1. DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
1o DEQUEUE

Vo 0 N OOk wh

et us Trace The above algorithm with queue LENGTH
=10. SL_||_ppose the current state of the queue is

FRONT=7 and REAR=8. 10 operations are

requested as under

1. DEQUEUE i -

>, ENQUEUE REAR=S —> 19 22 _
3. ENQUEUE 7| 15 [+ TRONTS
4. DEQUEUE 6

5. DEQUEUE 5

6. DEQUEUE ,

7. ENQUEUE

8. ENQUEUE °

9. DEQUEUE Z

10. DEQUEUE 1

N i Y

™

W o NOo Ok wN R

—
©

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=8 w—mp

22

15

<4 FRONT=

™

W o NOo Ok wN R

—
©

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=8 w—mp

22

<4 FRONT=

™

W o NOo Ok wN R

—
O

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=9 =P

22

<4 FRONT=

™

W o NOo Ok wN R

—
O

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=9 =P

55

22

<4 FRONT=

™

W o NOo Ok wN R

—
©

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=9 =P

55

22

<4 FRONT=

™

W o NOo Ok wN R

—
©

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=9 =P

REAR = LENGTH-1
Print “QUEUE IS FULL”

55

22

<4 FRONT=

™

W o NOo Ok wN R

—
©

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=9 =P

55

22

<4 FRONT=

™

W o NOo Ok wN R

—
©

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=9 =P

55

22

™

W o NOo Ok wN R

—
©

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=9 =P

55

™

W o NOo Ok wN R

—
©

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=9 =P

55

™

W o NOo Ok wN R

—
©

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=9 =——>

REAR=FRONT, THEN

SET REAR=FRONT=-
1

55

™

W o NOo Ok wN R

—
©

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=FRONT, THEN

SET REAR=FRONT=-
1

REAR-=-

RONT=
/ lfl /

™

W o NOo Ok wN R

—
©

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR-=-

RONT=
/ Ifl /

™

W o NOo Ok wN R

—
©

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=FRONT=-1,
THEN

PRINT "QUEUE IS
EMPTY”

REAR-=-

RONT=
/ lfl /

™

W o NOo Ok wN R

—
©

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR-=-

RONT=
/ lfl /

™

W o NOo Ok wN R

—
©

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=Q >

<4 FRONT=

™

W o NOo Ok wN R

—
©

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=Q >

45

<4 FRONT=

™

W o NOo Ok wN R

—
©

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=Q >

45

<4 FRONT=

™

W o NOo Ok wN R

—
©

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=1 =

45

<4 FRONT=

™

W o NOo Ok wN R

—
©

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=1 =

67

45

<4 FRONT=

™

W o NOo Ok wN R

—
O

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=1 =

67

45

<4 FRONT=

™

W o NOo Ok wN R

—
O

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=1 =

67

45

4= FRONT=

™

W o NOo Ok wN R

—
O

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=1 =

67

4= FRONT=

™

W o NOo Ok wN R

—
©

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=1 =

67

4= FRONT=

™

W o NOo Ok wN R

—
©

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=-

67

FRONT=
,//-1
/

™

W o NOo Ok wN R

—
©

DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
ENQUEUE
ENQUEUE
DEQUEUE
DEQUEUE

REAR=-

FRONT=
-1
/

* We can see that with this representation queue may
not be full, still a request for insertion operation is
denied

e This Is simply a wastage of storage

e This type of representation can be recommended for
an application where the queue is emptied at certain
Intervals

